霉菌性上颌窦炎

首页 » 常识 » 预防 » AICPS数字孪生MBD数
TUhjnbcbe - 2020/12/15 17:31:00
数字孪生模型在产品构型管理中应用探讨

导读:针对MBD技术的深层次应用,论述了数字线和数字孪生定义的概念和应用,指出数字线和数字孪生模型技术实施的重点和核心问题。指明全三维产品研制模式下对产品构型管理的新需求,探讨了基于数字孪生模型的产品构型管理方法和包含产品构型信息的产品数字孪生模型本体表达,为全三维研制模式下的产品构型管理提供了可行的技术解决方案。

作者:于勇范胜廷彭关伟戴晟赵罡

来源:e-works数字化企业网

基于模型定义MBD(ModelBasedDefinition,MBD)技术是将产品的所有相关设计定义、工艺描述、属性和管理等信息都附着在产品三维模型中的先进的数字化定义方法。基于模型定义的技术自波音飞机首次引入并向其他行业进行推广已经日趋成熟,其效益已经被国内外知名公司和机构反复验证。目前国外相关研究的重点是实现面向产品生命周期全过程全要素的制造信息集成共享和协同环境,最终建立基于模型的企业MBE(ModelBasedEnterprise)。在此基础上,美国开展了数字线DT(DigitalThread)技术研究,进而又提出了数字孪生DT(DigilalTwin)的概念。数字孪生概念的产生和应用是MBD技术的进一步发展,使数字化设计制造技术迈向了一个新的台阶,是实现智能制造的基础。目前,我围制造企业已经较好地实现了二维研制模式下的产品构型管理和控制过程,然而,随着MBD技术的发展和深入应用,如何实现全三维模式下的产品构型管理又成为产品构型管理领域中的新议题,数字孪生相关技术的产生和应用为全三维研制模式下产品构型管理提供了一个可借鉴的技术方案。

数字线与数字孪生的概念与应用

数字线最早是由洛克希德·马工公司提出的,他们在生产F一35中将MBD数据直接输入计算机数控机床加工成零件。或通过编程系统完成复合材料的敷设,并将这种新的工作模式称之为“数字线”。“数字线”为F一35的3种构型节省了套工装,还省去了这些工装的管理和与零件相互配置的时间,以及工装的配送和向机床上装夹所花费的时间。数字线产生的背景建立在“模型为中心”的基础上,这里的模型是具备信息完整丰富、按照统一的开放标准建立的、规范的和语义化的数字化模型,并且可被机器(或系统)稳定无歧义地读取。在此基础上,数字线集成并驱动现代化的产品设计、制造和保障流程,使各环节的模型都能够及时进行关键数据的双向同步和沟通。其原理如1所示。可以看到,在设计与生产的过程中,仿真分析模型的参数传递给产品定义的全三维几何模型和数字化生产线加工成真实的物理产品,然后通过在线的数字化检测/测量系统反映到产品定义模型中,进而再反馈到仿真分析模型中,从而实现了一个数据的双向传递过程。数字线的核心就是如何搭建一个涵盖产品研制全过程的协同环境,使统一的模型在产品研制各个阶段实现数据的双向流动、重用和不断丰富的过程。

图1数字线原理

数字孪生也被称为数字镜像、数字双胞胎和数字化映射。数字孪生是MBD技术的深入发展和应用,其根源在于企业在实施基于模型的系统工程MBSE(ModelBasedSystemEngineering)过程中,产生了大量的基于物理的、数学的模型被忽视。由此,最早的数字孪生思想由密歇根大学的MichaelGrieves命名为“信息镜像模型”(InformarionMirroringModel),而后扩展为“数字孪生”的术语。年NASA公布的技术路线图中给出了数字孪生的概念描述。数字孪生是指充分利用物理模型、传感器、运行历史等数据,集成多学科、多尺度的仿真过程,它作为虚拟空间中对实体产品的镜像,反映了相对应物理实体产品的全生命周期过程。

随后,美国国防将数字孪生应用于航空航天飞行器的健康维护与保障中。其目的是在数字空间建立真实飞机的模型,并通过传感器实现与飞机真实状态完全同步,这样每次飞行后,根据结构现有情况和过往载荷,及时分析评估是否需要维修,能否承受下次的任务载荷等。随后数字孪生的概念被扩展到制造领域,美同国防采办大学对数字孪生的定义是充分利用物理模型、传感器、运行历史等数据,集成多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成映射,从而反映相对应实作产品的全生命周期过程。其中实作产品(As—builtProduct)模型的内容可包括物理产品构型、材料微观结构、瑕疵、制造异常等。图2为飞机产品的数字孪生示例。

图2数字孪生定义示例

可以看到飞机的数字孪生模型与飞机物理产品建立了一对一的映射,不仅包括传统的几何模型,还包括材料属性、生产、检验、力学分析、空气动力、健康维护以及试飞等物理实现环节所反馈的一系列数据。这些数据通过数据线建立的双向通道向研制的上游和下游不断反馈、解析和利用从而形成可设计制造的智能闭环。也可以说数字孪生是虚拟制造和数字样机技术的深入和拓展,从定义范同来看,其不仅仅进行了产品的数字化定义,而是扩展了包含产品研制的所有实体装备的数字化定义;从涉及范围来看,其向后延拓至生产研制的终端——实作产品的数字化定义,两者的定义和应用目标如表1所示。

由此可以看到,数字孪生的核心问题是如何定义包含产品研制全过程的全要素产品模型,如何为研制全过程提供数据准备或者反馈,从而实现“基于模型驱动”的产品研制模式。

全三维研制模式下产品构型管理

构型管理是一种面向产品全生命周期的,以产品结构为组织方式,将各阶段产品数据关联起来并对其进行管理和控制,从而保证产品数据一致性和有效性的产品数据管理技术,有些行业也称之为技术状态管理和配置管理。构型管理通过5个关键要素,即构型管理计划、构型标识、构型更改控制、构型纪实、构型审核和验证,建立起一套科学的、可靠的产品质量保障体系。总地来说,实施构型管理的主要目的包括以下几点:

(1)从宏观上把握大型复杂产品的整体结构,建立产品整体结构,并充分利用已有的设计成果,缩短产品的设计周期;

(2)协调更改,建立产品完整的更改历史记录,进行有效的版本管理和控制,维护产品数据的全部有用版本,确保在各个阶段能够获得产品的完整的技术描述;

(3)控制、检查、调整交付状态构型要求与真实生产后的构型偏差,确保产品的性能、功能特性和物理特性与产品的需求、设计和使用信息之间的一致性。

目前来看,大多制造企业在实施构型管理过程中,已经改变了原来基于图纸的构型管理模式,逐步建立了基于零件或模块的构型管理模式,即通过产品数据管理系统建立产品结构,并以之为主线建立产品各环节和各组成部分的关联,进行产品的构型管理和控制。但在构型纪实、构型验证和审核验证环节中,其本质和还是沿用了传统模式下的构型管理机制,尤其是在物理构型的审核环节,其分为功能构型审核和物理构型审核,功能构型审核是检查构型项是否实现了需求定义的性能、功能和接口特性要求;物理构型审核是检查物理构型项是否与图纸或模型、技术规范、技术数据、质保数据和试验记录等的一致性要求。其最终目的是为了保证最终的物理产品构型与需求、设计、制造和交付整个生命周期的闭环。现有的构型管理方法往往是通过对研制过程中的文件、产品和记录(包括构型清单、规范、二维图样、维模型、操作检验记录等)的逐项检查,以及对各种程序、流程和操作系统的评估,来检验产品的设计是否满足性能和功能要求,以及产品的状态是否已被准确地记录在文件之中。基于这种工作模式,虽然有产品数据管理等系统的辅助,技术人员和构型审核人员也需要花费大量的时间聚焦在产品图纸、产品模型和各种数据报表之间的比对和维护当中,效率极低且容易出错。

随着全三维研制模式和智能制造技术的发展和深入应用,对产品构型管理提出了更高的要求:

(1)客户个性化需求增强,产品的设计构型多变,产品构型管理过程需要动态响应;

(2)智能化设备的大量采用,要求产品研制过程中构型数据的快速收集、提取和实时反馈;

(3)产品研制的全生命周期过程中,产品构型数据需要进行全面分析和维护。以改善设计和制造工艺过程,改善产品质量。

显然传统的构型管理方法已不能适应当前构型管理的高效的动态响应要求,因此需要一种高效可控的构型数据管理和控制机制,来实现产品研制全生命周期过程中产品构型数据的快速收集、提取和高效追溯。

基于数字孪生模型的产品构型管理

数字孪生通过在虚拟空间中构建真实物理世界中的产品模型,通过物理系统向赛博空间数字化模型的反馈,实现了闭环的研制过程。数字孪生的关键技术包括数字化定义、数据检测与采集、大数据分析、多物理场建模等诸多技术,其中最基础也是关键的是如何构建一个包含产品全生命周期全过程的全要素的产品模型,这个产品模型能够实现与物理真实世界的一一映射。这样包含了产品物理研制全过程全要素的产品模型,则可以在产品构型验证和审核的过程中,建立与相关研制数据之间的关联,省去了原来传统构型纪实和构型验证审核过程中人工进行模型和研制数据之间的对比工作,大大增加了审核效率和一致性判断。同时,产品数字孪生模型中包含了产品的构型状态数据也为构型更改控制过程中实现快速动态响应,预见产品质量和制造过程、推进设计和制造的高效协同、确保设计和制造的准确执行提供了基础。基于产品数字孪生模型的产品构型数据定义与反馈过程如图3所示。构型项在研制的全生命周期过程中,一般会经历设计、工艺规划、生产制造、检验检测等全过程,相关的构型数据会在产品不断演变和向后拓延的过程中,不断丰富和完善,相应的产品设计和研制数据与模型特征建立关联,从而实现模型驱动的产品研制过程。针对构型管理过程中的构型标识、构型控制、构型纪实、构型审核与验证而言,也恰恰实现了模型驱动的产品构型数据的收集、采集和实时反馈的过程。

图3基于数字孪生模型的构型数据定义与反馈过程

在基于数字孪生的产品构型数据定义与反馈过程中,一个非常重要的关键技术就是需要实现基于语义的产品模型表达。所谓的本体是为了描述真实世界中客观对象所隐含的语义信息而诞生的。W3C推荐采用OWL语言作为一种本体描述语言,其具有统一语法格式、明确语义。对于特定领域和应用范同,根据领域知识,利用OWL本体语言,可以定义OWL类及OWL属性,实现领域本体构建。在基于本体的产品数字孪生模型建模过程中,可以构建以设计模型为父类、几何特征和构型数据为子类的组织形式,其中几何特征子类用来描述模型的实体信息和尺寸与公差信息;构型数据子类描述产品的构型技术状态信息。图4为包含构型数据的零件数字孪生模型的本体表达框架。

图4包含构型数据的数字孪生模型本体表达

几何特征子类的本体表达抽取了5类常见特征作为研究对象,包括凸台(Pad)、凹槽(Pocket)、旋转体(Shaft)、加强筋(Stiffener)和也(Hole),建立了基于草图的特征本体分类及数据属性。以“Hole”类为例,可将其分为简单孔(Simple—Hole)与复杂孔(Complex—Hole)。对于“Simple—Hole”类,包括两个属性:

·孔深度(has—Holedepth):

·孔直径(has—Holediameter)。

对于“Complex—Hole”,以沉头孔(Counterbored—Hole)为例,包括4个属性:

·沉头直径(has—Boreddiameter)

·沉头深度(has—Boreddepth)

·孔直径(has—Holediametet)

·孔深度(has—Holedepth)

构型数据子类包括设计数据(Design—Data)、制造数据(Manufacture—Data)和检测数据(Inspection—Data)。以“Inspection—Data”的检测反馈(Inspection—Spaceholder)子类为例,可包括3个属性:

·内容(has—Content)

·链接(has—URL)

·对象关联(has—reliance)

其中内容(has—Content)属性用来描述检测反馈的数据,链接(has—URL)用来描述检测用到的外部链接;对象关联(has—reliance)属性用来描述特征与构型反馈数据之间的关联关系。由此,构建的基于本体的产品数字孪生模型可以与相应的构型数据关联在一起,实际的物理产品研制过程中的相关技术状态数据也可以与之建立关联关系,从而可以基于产品数字孪生模型实现构型数据的纪实,进而实现全三维研制模式下模型驱动的构型数据快速追溯和快速响应。

结束语

全三维研制模式下对产品的构型管理提出了更高的要求和挑战。产品数字孪生模型能持续积累产品设计、制造和检验全生命周期过程的相关数据和知识。并可以不断地实现重用和改进,其通过动态感知、存储和呈现产品全生命周期的构型信息,从而可以实现产品构型数据的管理、追踪和一致性维护,实现产品构型在全生命周期过程中的可视化和透明化。本文目前仅探索了一种包含产品构型信息的产品数字孪生模型的构建框架和基于本体的表达方式,以期为全三维研制模式下的产品构型管理提供一个可行的技术解决方案。随着研究的逐步深入,基于产品数字孪生模型的构型管理方法不仅可以高效实时地记录和反映产品的构型状态,而且可以基于反馈同的产品构型数据进行大数据统计和分析,从而改进产品研制流程,提高产品设计质量。

揭秘华为数字化“双胞胎”工厂文

华为人说实话,工业4.0是新生事物,没人对它有清晰完整的认知,也没人知道它的道路将有多远,而且路上必然会伴随着无数质疑和挑战。可不管怎样,既然它是正确的方向,我们就要勇敢地向前走。号角已经吹响,未来才刚刚开始。

本资料来源于e-worksVIP智库

崔健在歌里唱到,“不是我不明白,这世界变化快。”放在两年前,如果有人跟我说起“工业4.0”,我可能会一脸懵,但现在,我们已经在这条路上迈开第一步了。工业4.0是一个热得烫手的概念,也是大势所趋,它将物理世界与虚拟世界融合,从数据中创造价值。年,我有幸加入面向工业4.0的华为三化(自动化、数字化、智能化)制造项目组,“三化”中最基础也最先行的是“数字化”,我们团队就肩负着数字化制造转型的重任。

“一草一木”皆智能

数字化转型的前提,是万物互联,要让车间里的人员、机器、物料、产品和环境等这些“一草一木”,都能开口报出自己的状态并且相互传递信息。这些信息包括“一草一木”各自所处的位置,每天吸收了多少阳光、多少水、多少矿物质,长了多高、施了多少肥、谁施的肥,甚至一天的光照强度、风力、湿度等。这样系统可以有效调整施肥的配比、浇水量、光照强度等,促使“一草一木”更好地生长。

设想是美好的,但这事有多难呢?单说让“花草树木”主动报告自己的位置,就好比你拿颗大小相同的弹珠,每个上面编了一个很小的序号,撒在你们家客厅,然后要求随便报一个序号,就能够马上找到对应的弹珠。

“那感觉我们是要给每个物件都配部手机啊。”有同事开玩笑说。

“对!就是给它们都配上终端设备。”

“可是终端设备在室内的GPS精度不高,而且对续航能力要求高,不能三天两头就去给它充电,哪里有这样的终端?”

“去找!”

3G、4G、wifi、蓝牙、zigbee、LTE(eLTE)、Z-wave、NB-IoT、GPRS、SigFox、LoRa等,这些技术我们研究了个遍,都无法满足精准定位。我们终日苦思弥想,与产品线的兄弟交流,查各种文献,终于找到一种相对合适的方法,通过UWB(超宽带)进行定位。UWB技术传输速率高(最高可达0Mbps以上)、发射功率较低、穿透能力较强,且是基于极窄脉冲的无线技术无载波。正是这些优点,使它在室内也能有较精确的定位。

最初,我们在市场上找到几家能提供该类产品的公司,都号称“定位精度能达到10cm,电池能用半年”,听到这种消息,我们当然欣喜若狂,这即将给我们的生产带来革命性的影响。然而,把产品拿到现场一测试,全是问题,精度基本都在50cm以上,而且由于车间环境复杂,位置漂移严重,人站在A工位,实际定位到B工位,完全没法使用。如果连物品的位置都找不到,谈何数字化,说出去岂不是笑话。测试完后的那几天,情绪十分低落。

但项目还是要做啊,我们耐着性子,几乎把所有具备UWB室内定位技术的公司都搜了个遍,一家一家地联系,一家一家地测试验证,真的是屡败屡战……正当我们失望至极时,有一家小公司的产品竟然初步满足我们的要求,精度能达到了15~30cm,理论功耗可以用三个月。虽然深入验证后同样有许多问题,比如定位漂移与功耗,还有车间环境复杂,存在着定位死角,但毕竟让大家看到一丝希望。

活人总不能被尿憋死啊,我们联系厂家,共同改进。一点一点地改、一点一点地调,比如通过增加定位基站的布局密度,使覆盖无死角;优化定位软件算法,减少漂移幅度;降低定位标签发射频度,减少电池消耗。

通过一系列措施,终于达到基本可用的条件,定位精度达到了15cm。什么概念呢?人的鞋子大概是30cm左右长,工位和工位之间大概1~2米,设备和设备之间也大概1~2米,这个精度可以让携带定位标签的人员、工装夹具、周转工具、设备精准地报出所在位置及状态信息。

基于各种资源的定位数据与轨迹,我们还可以做许多大数据分析与应用,对提升工厂的透明度与运作效率有非常大的帮助。室内定位技术的应用,只是实现车间“一草一木”皆智能的手段之一,我们还借助其他各种通讯技术、RFID、传感器、设备物联等方法,针对不同的场景,让更多花草树木开口说话,实现车间的万物互联。

双胞胎工厂

搜集“一草一木”的数据不是目的,关键是后续怎么使用它?我们了解到,业界有一种“玩法”,用这些数据搭建工厂。从实体的物理工厂搜集流程数据、设备数据和产品数据,基于这些数据,以数字化的方式,在虚拟空间里复制实体工厂。这一对物理工厂和数字化工厂,一般称之为“双胞胎工厂”。

可是说实话,“双胞胎工厂”是工业4.0时代的新玩意,一开始我们更多地是“赶时髦”,并不十分清楚它能应用到哪些领域、带来什么价值。在我们成功做出“双胞胎工厂”后,曾一度陷入迷茫,到底该怎么使用它?

一天,我正在车间转悠,发现一位相熟的工段长皱着眉头,有点小脾气,原来,他产线上的产品在测试后发现异常,现在要找出是哪个生产环节出现问题。“这么长的生产流程,哪里去找问题嘛!”第二天我又遇见他,他告诉我,一群人费了好大劲,终于发现是产线上某台设备出了点小毛病,原本该供5安电流,只供了4安,“你说,就这么点小问题,耗费我们多少人员和精力。”

分手后,我仔细回味了一下这位工段长的话,这不是正好瞌睡遇到枕头吗?我们的“双胞胎工厂”正愁不知道怎么发挥价值,其实完全可以解决他困扰。我立马就去找他,给出解决方案,在产线所有关键节点上布置数据采集点,这样就采集了三个方面的数据:流程数据、设备数据和产品数据,将这些数据导入数字化工厂中,如此一来,从一个节点到一个节点之间,人员、物料、设备、产品的实时数据和任何改变,全都在虚拟工厂中一目了然,一旦有异常,管理者当场就能发现和处理。

有了一次成功的应用,我们信心大增,更加勤快地在车间里满处转悠。某天,我和团队另一名成员在生产现场,他突然猛拉我一下,指向地上,“我们每天都看到的东西,见怪不怪了,可是这真的正常吗?”我明白过来,他说的是地上堆积如山的物料。以往,我们的生产是“推式”的,比如这批货要产台,那么供应部门就把台产品所需的物料全部运到车间,不仅占地方,找起来还特别麻烦。而且产品生产的速度不同,经常出现第一台产品孤零零的躺在中转站,眼巴巴地盼望着跟它在同一个订单的“兄弟”,而它的“兄弟”拿到被包装的号牌是号,前面还有99台在等待包装,很是影响效率。

要不,我们用新武器来试试?我们先将产线的数据导入数字化工厂,在数字化工厂中试着调整参数,加之数字化工厂本身就是智能化的,很快我们就找到了一种更合理的流程。将这个流程再同步到实体产线中,数字化工厂就能根据不同的产品生产时间,智能分批分配物料、控制生产节奏。自此,我们既不用把所有物料一次性堆在产线现场,也不用让先出生的产品长时间等待后出生的产品。

后续,我们又用双胞胎工厂推动了测试预测和包装排产等改善,进一步准确预测出测试周期,消除了包装环节的拥堵状态,提升现场作业效率28%,节省人力40多人。如今,它已运行了近一年时间,获得生产部门的广泛认可。

移动起来

一天在食堂吃饭,一位工程师叹气,“脚都直了,今天太累了。”

“你一个工程师,又没干重体力活,有那么累吗?”我感到奇怪,反问他。

“你试试就知道了,来回地走,一天下来不知道走了多少路。”

之后我认真地观察了一下,生产现场的工程师和技术员一般是拿着小本子记东西,记完后又去找电脑查资料,再回到设备前继续记录,如此反复来回走动,如果碰到比较棘手的问题,一天的走动量确实不小。我开始认真考虑,是否可以改变靠纸质作业的流程,不仅仅是减少员工的走动,更重要的是,纸质作业有时会导致信息传递不及时、不准确。

早都进入移动互联网时代了,一个手机就能满足我们大部分生活需求,生产现场为什么不行?“我们搞个APP不就行了吗,每人拿部手机,随时随地办公。”我跟同事商量着,觉得事情应该很简单。

可还没动手干就遭遇难题,车间主管顾虑重重,担心踩了信息安全的红线,因为经常会有核心产品在这试制,一些关键物料的数据参数都会在制造系统里流转,车间员工平时上班都是不让带手机的。这让我们一度十分沮丧,我们的想法是有价值的,却被一个信息安全问题给难住了。

一次,我去银行办业务,看到工作人员用PAD处理我的转账请求,忽然想到,银行也是对信息安全要求极高的行业,既然银行可以用PAD,那么我们也行。PAD屏幕尺寸适中,既方便员工移动作业,又可以显示比手机界面更多的信息,而且是统一采购,可以定制化配置操作系统,规避私人手机所带来的信息安全问题。

使用PAD的想法终于通过,我们开始找一项业务进行试验。就从最传统和繁琐的巡检业务开始改进,以往巡检员是靠纸和笔记录巡检情况,一个普通产品要耗费一二十张纸,有的特殊产品更是要一百多张纸,况且全凭巡检员一支笔,某些特殊情况下巡检结果存在一定疑问。于是我们在PAD上开发了移动巡检应用,同时给每台设备上贴上

1
查看完整版本: AICPS数字孪生MBD数